Detection system for lung cancer based on neural network: X-Ray validation performance

نویسندگان

  • Vinod Kumar
  • Anil Saini
چکیده

In our daily life, cancer is well-known disease that causes of death in both men and women and understand about the survival rate of lung cancer which is extremely poor. To increase this survival rate of cancerous patient, it is primarily to detect at premature stage which enables many new options for the cancer treatment without risk. In this paper, the author represents Lung Cancer Detection System for finding of lung cancer by analyzing chest X-rays with the help of image processing mechanisms. This system assists to radiologists for their X-ray image interpretation of lung cancer. This paper presents a neural network based approach to detect lung cancer from raw chest X-ray images. The author use an image processing techniques to denoise, to enhance, for segmentation and edge detection in the X-ray image to extract the area, perimeter and shape of nodule. These extracted features are considered as the inputs of neural network to train and to verify whether the extracted nodule is a malignant or non-malignant. This research work concentrate on detecting nodules, early stages of cancer diseases, appearing in patient’s lungs. Most of the nodules can be observed after carefully selection of parameters. The training dataset of X-ray images are processed in three stages to attain more quality and accuracy in the processed examination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of the Different Primary Cancers and Different Types of Bone Metastasis on the Lesion-based Artificial Neural Network Value Calculated by a Computer-aided Diagnostic System,BONENAVI, on Bone Scintigraphy Images

Objective(s): BONENAVI, a computer-aided diagnostic system, is used in bone scintigraphy. This system provides the artificial neural network (ANN) and bone scan index (BSI) values. ANN is associated with the possibility of bone metastasis, while BSI is related to the amount of bone metastasis. The degree of uptake on bone scintigraphy can be affected by the type of bone metastasis. Therefore, t...

متن کامل

Non-melanoma skin cancer diagnosis with a convolutional neural network

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...

متن کامل

A review of neural network detection methods for breast cancer: review article

Breast cancer is the most common cancer among women and the earlier it is diagnosed, the easier it is to treat. The most common way to diagnose breast cancer is mammography. Mammography is a simple chest x-ray and a tool for early detection of non-palpable breast cancers and tumors. However, due to some limitations of this method such as low sensitivity especially in dense breasts, other method...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

Mass Detection in Lung CT Images Using Region Growing Segmentation and Decision Making Based on Fuzzy Inference System and Artificial Neural Network

Lung cancer is distinguished by presenting one of the highest incidences and one of the highest rates of mortality among all other types of cancers. Detecting and curing the disease in the early stages provides the patients with a high chance of survival. This work aims at detecting lung nodules automatically through computerized tomography (CT) image. Accordingly, this article aim at presentin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013